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We establish a simplified form of the axisymmetric Fokker–Planck–Landau op-
erator. In doing so, we derive a weak formulation of this operator on which we get
directly the conservation properties and the decay of the entropy as it is the case for
the three-dimensional operator. A symmetrized version of this formulation leads to
a class of numerical schemes which satisfy these physical properties at the discrete
level. Fast numerical algorithms used in previous works are shown to be efficient in
the cylindrical geometry. Finally, some numerical tests are presented at the end of
this paper. c© 2000 Academic Press

1. INTRODUCTION

The Fokker–Planck–Landau (FPL) equation is used for the description of binary col-
lisions between charged particles, for which the interaction potential is the long-range
Coulomb interaction. Iff (t, v) is the distribution function of particles (assumed to be
spatially homogeneous), then the homogeneous FPL equation is

∂ f

∂t
= Q( f, f ) = ∇v .

(∫
R3
8(v − v′)( f (v′)∇ f (v)− f (v)∇ f (v′)) dv′

)
. (1.1)

Q( f, f ) is the FPL collision operator.8(v) is the 3× 3 matrix

8(v) = K (|v|)|v|2S(v), S(v) = Id3− v ⊗ v|v|2 . (1.2)

S(v) is the orthogonal projector onto the plane orthogonal tov andK (|v|) is an arbitrary
positive function which usually takes the value|v|γ . γ is a real parameter which leads to
the usual classification in hard potentials (γ >0), Maxwellian molecules (γ = 0), or soft
potentials (γ <0). This latter case involves the Coulombian case itself (i.e.,γ =−3). For a
precise physical context of FPL operators, see [17, 13, 21, 22].
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The FPL collision operator is the limit of the Boltzmann operator for a sequence of
scattering cross section which converges in a convenient sense to a delta function at zero
scattering-angle [1, 9]. In the case of a Coulomb interaction, the FPL collision operator is
obtained as the leading term of the cut-off Boltzmann operator when the parameter of the
cut-off tends to zero [7]. The problem of the convergence (in some sense) of the solutions
to the homogeneous Boltzmann equation towards those of the FPL equations in the grazing
collisions limit has been investigated in a recent work [24]. This last study includes the
physical interesting case of Coulomb interactions. In this paper we are concerned with
numerical aspects of the FPL operator in the particular case when the distribution function
has a cylindrical symmetry with respect to the velocity variable. This geometry is a natural
context for the laser-produced plasma interactions.

The FPL operator can be written in a weak formulation as∫
R3

Q( f, f )(v)ψ(v) dv = −1

2

∫ ∫
R3×R3

f (v) f (v′)(∇ψ(v)

−∇ψ(v′))T8(v − v′)(∇(ln f )(v)

−∇(ln f )(v′)) dv dv′ (1.3)

for any smooth test functionψ . From this duality relation, one can derive (at least formally)
the following physical properties onQ( f, f ):

(i) Conservation of mass, momentum, and energy,

d

dt

∫
R3

f (v)

 1
v

|v|2

 dv

 = ∫
R3

Q( f, f )(v)

 1
v

|v|2

 dv = 0. (1.4)

(ii) The equilibrium functions (or steady states), that is, the positive functionsf such
that Q( f, f )= 0 are Maxwellians,

MN ,u,T (v) = N(
2πv2

th

)3/2 exp

(−|v − u|2
2v2

th

)
. (1.5)

N is the density number of particles andvth is the thermal velocity which is linked to the
temperatureT of the gas by the relation

vth =
√

kT

m
,

wherek is the Boltzmann constant,m the mass of one particle, andu is the mean velocity
of the particles.

We shall say that a functionψ is a collisional invariant if

d

dt

(∫
R3

f (t, v)ψ(v)dv

)
=
∫

Q( f, f )(v)ψ(v) dv = 0 ∀ f > 0. (1.6)

Then from (1.3) and using the nullsapce of the matrix8(v− v′), we deduce that the colli-
sional invariants are the functionsψ(v) such that∇ψ(v)−∇ψ(v′) is colinear tov− v′ for
all v andv′ in R3. Such functions are linear combinations of mass, momentum, and energy,
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i.e., 1,v, and|v|2. Again from (1.3), we now observe thatQ( f, f )= 0 if and only if ln f
is a collisional invariant. The property (ii) is then equivalent to saying that the only collisional
invariants are linear combinations of 1,v, and|v|2. We refer to [6] for details.

(iii) H-theorem,

d

dt

(∫
R3

f (t, v) ln f (t, v)dv

)
=
∫
R3

Q( f, f )(v) ln( f (v)) dv ≤ 0, (1.7)

translating the decay of the kinetic entropyH= ∫R3 f ln f dv.

These are three fundamental properties that govern the evolution of particles in the plasma.
A good numerical discretization of the FPL operator has to obey this physical behavior, and
so has to satisfy discrete analogues of the three properties. Such a discretization ensures for
instance the relaxation (in time) of the distribution function to the right Maxwellian. Various
works have been concerned with numerical schemes for the FPL equation. We mention in
particular [3] for the isotropic case and [19, 20, 25] for the axisymmetric problems. We
also refer to [10] for a time-implicit scheme to solve the FPL equation and to [14] for
a mass conserving finite volume scheme. All these works satify at least one (usually the
conservation of mass) of the above physical properties but never simultaneously both of
them. Morever, such schemes are of quadratic complexity and the computational cost is
big. In the recent past, discretizations of the three-dimensional FPL operator that satisfy all
the above physical properties have been performed first in [6], and second in [5, 15] using
fast numerical algorithms. The use of a rapid numerical scheme is of crucial importance
when one wants to solve realistic problems in plasma physics, i.e., with the presence of
the transport term or/and a self-consistent force term (Vlasov–Poisson–FPL system). In
[23] a difference scheme to solve the Vlasov–Fokker–Planck system is introduced and a
convergence result of this scheme is established in one dimension (for space and velocity).
The operator considered in [23] is a linear and one-dimensional collisional operator. Finally
numerical analyis and approximations of other Fokker–Planck models in plasma physics
have been investigated in [8].

In this paper we are concerned with the expressions of the collision operator and its
numerical discretizations when the distribution functionf presents a cylindrical symmetry.
More precisely, let(I , J, K ) be a canonical basis ofR3, and let us write any vectorv ∈R3

with cylindrical coordinates in the following way

v = v‖ I + v⊥U, U = (cosθ)J + (sinθ)K , v‖ ∈ R, v⊥ ∈ R+, θ ∈ [0, 2π ]. (1.8)

A function f of v ∈R3 presents a cylindrical symmetry (or is axisymmetric) if and only
if f depends only on the two componentsv‖ ∈R andv⊥ ∈R+. In all the sequel the distri-
bution functions are supposed to be axisymmetric. We denote by∂‖ψ and∂⊥ψ the partial
derivatives ofψ with respect tov‖ andv⊥, whenψ is axisymmetric. Finally, if we set
V = (v‖, v⊥) andV ′ = (v′‖, v′⊥), then we prove that there is still a weak formulation similar
to (1.3) according to (2.9).

Replacingψ successively by 1, v‖, v2
‖ + v2

⊥ in the weak formulation (2.9), we obtain the
conservation of mass, parallel momentum, and energy. Letting nowψ = ln f , we obtain the
decay of the entropy. Conversely, the only functionsψ for which

∫
R×R+Q( f, f )(V)ψ(V)v⊥

dV= 0 for all f (or equivalently for which the vector(∂‖ψ(V)− ∂‖ψ(V ′), ∂⊥ψ(V),
∂⊥ψ(V ′)) is colinear to the vector(v‖ − v′‖, v⊥, v′⊥) for all V,V ′ ∈R×R+) are linear com-
binations of 1, v‖, v2

‖ + v2
⊥. This fact can be proved as in the three-dimensional case [6].
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The numerical approximation of the axisymmetric operator entails a symmetrization of
the continuous formulation with respect to the axis (v⊥= 0). The functionsf andψ are
then extended toR×R to even functions with respect tov⊥. Using this symmetrization,
we obtain a numerical scheme satisfying the conservation of mass, parallel momentum, and
energy, the decay of the entropy, and the fact that the only steady states are Maxwellians.
The present numerical study treats the Coulombian case (of physical interest) as well as
the Maxwellian case (γ = 0) which enables us to compare the numerical results with exact
solutions [16].

Recently, conservative and entropy discretizations of the axisymmetric FPL operator
were investigated in [11], but our approach is different and simpler: first the expression of
the operator is explicitly computed (the integration with respect to the angle is carried out),
and second, the spurious collisional invariants are eliminated in a very simple way and no
perturbation process is needed. Furthermore, we show in Section 4 how the fast algorithms
that were preformed in a 3D computation can be applied in the cylindrical geometry case.
These fast algorithms dramatically reduce the numerical cost without destroying the physical
properties of the scheme and its accuracy.

The paper is organized as follows: In Section 2 we present a simple expression of the
axisymmetric FPL operator and give a symmetrized version with respect to the axis. In
Section 3 we present a numerical discretization of the axisymmtric FPL operator that
preserves all the physical properties described above at the discrete level. In Section 4
we show how to use fast algorithms without affecting the properties of the scheme and its
accuracy. Finally, in Section 5 we give some numerical tests illustrating the efficiency of
such discretizations and such algorithms.

2. EXPRESSIONS OF THE AXISYMMETRIC FPL OPERATOR

PROPOSITION2.1. If f only depends on V= (v‖, v⊥), then:

(i) Q( f, f ) only depends on V .
(ii) There exists a3× 3matrix Ä(V,V ′), symmetric, positive semi-definite, such that

∫
R×R+

Q( f, f )(V)ψ(V)v⊥ dV

= −1

2

∫ ∫
(R×R+)2

f (V) f (V ′)

 ∂‖ψ(V)− ∂‖ψ(V
′)

∂⊥ψ(V)

∂⊥ψ(V ′)


T

Ä(V,V ′)

×

 ∂‖(ln f )(V)− ∂‖(ln f )(V ′)

∂⊥(ln f )(V)

∂⊥(ln f )(V ′)

v⊥v′⊥ dV dV′ (2.9)

for all test functionsψ(V). The nullspace ofÄ(V,V ′) is

KerÄ(V,V ′) = R

 v‖ − v
′
‖

v⊥
v′⊥

 if (v‖ − v′‖, v⊥, v′⊥) 6= (0, 0, 0). (2.10)
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From these properties ofÄ(V,V ′)and the weak formulation(2.9),we deduce the following
properties on the collisional operator:

(a) The collisional invariants are linear combination of mass, parallel momentum,
and energy. That is, if

∫
R×R+Q( f, f )(V)ψ(V)v⊥ dV= 0, for all f thenψ is a linear

combination of1, v‖ andv2
‖ + v2

⊥.
(b) The H-theorem,∫

R×R+
Q( f, f )(V) ln f (V)v⊥ dV≤ 0 ∀ f, (2.11)

the left-hand-side of(2.11) is equal to0 if and only if f is a Maxwellian,

f (V) = exp
(
C1+ C2v‖ + C3

(
v2
‖ + v2

⊥
))

with C1,C2, and C3 being real constants. This property translates the decay of the kinetic
entropy(in the homogeneous case),

d

dt

(∫
R×R+

f (V) ln f (V)v⊥ dV

)
≤ 0.

Proof. (i) This is a straightforward consequence of the invariance under orthogonal
transformations ofR3 of the FPL operator:Q( f ◦ R, f ◦ R)= Q( f, f ) ◦ R for any
orthogonal transformationR of R3.

(ii) By using the notations (1.8), the 3-dimensional gradient of an axisymmetric func-
tionψ may be written as

∇ψ(V) = ∂‖ψ(V)I + ∂⊥ψ(V)U, ∇ψ(V ′) = ∂‖ψ(V ′)I + ∂⊥ψ(V ′)U ′. (2.12)

Inserting these expressions in the 3-dimensional expression (1.3), and making the cylin-
drical change of variables in the integrals, we obtain the weak formulation (2.9). In particular,
the matrixÄ is given by

Ä(V,V ′) =
 A B −B′

B C −D
−B′ −D C′

 (2.13)

with 

A= A(V,V ′) = ∫ 2π
0

∫ 2π
0 I T8(v − v′)I dθ dθ ′,

B= B(V,V ′) = ∫ 2π
0

∫ 2π
0 U T8(v − v′)I dθ dθ ′

C= C(V,V ′) = ∫ 2π
0

∫ 2π
0 U T8(v − v′)U dθ dθ ′,

D=D(V,V ′) = ∫ 2π
0

∫ 2π
0 U T8(v − v′)U ′ dθ dθ ′,

(2.14)

where x · y denotes the scalar product inR3 betweenx and y. First we see thatÄ is
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symmetric. Simplified expressions ofA, B,C, andD can be obtained after a few calcula-
tions,

A = A(V,V ′) = 2π
∫ 2π

0 3(V,V ′, cosη)
(
v2
⊥ + v′2⊥ − 2v⊥v′⊥ cosη

)
dη

B = B(V,V ′) = −2π
∫ 2π

0 3(V,V ′, cosη)(v‖ − v′‖)(v⊥ − v′⊥ cosη) dη

C = C(V,V ′) = 2π
∫ 2π

0 3(V,V ′, cosη)
[
(v‖ − v′‖)2+ v′2⊥ sin2 η

]
dη

D = D(V,V ′) = 2π
∫ 2π

0 3(V,V ′, cosη)
[
(v‖ − v′‖)2 cosη + v⊥v′⊥ sin2 η

]
dη,

(2.15)

where

3(V,V ′, cosη) = K
([
(v‖ − v′‖)2+ v2

⊥ + v′2⊥ − 2v⊥v′⊥ cosη
]1/2)

(2.16)

and K is the function arising in the definition of the matrix8 given by (1.2).A and D
are symmetric with respect toV andV ′: A(V,V ′)= A(V ′,V) andD(V,V ′)= D(V ′,V).
Instead,B andC are not symmetric and we setB′ = B(V ′,V) andC′ =C(V ′,V). Using
these formulae, we easily check thatv‖ − v

′
‖

v⊥
v′⊥

∈KerÄ(V,V ′).

Furthermore, the rank of the matrixÄ is equal to 2 when(v‖ − v′‖, v⊥, v′⊥) 6= 0. Indeed,
by Cauchy–Schwartz inequality, we haveB2≤ AC andD2≤CC′ and the equalities hold
simultaneously if and only ifv‖ − v′‖ = v⊥ = v′⊥= 0. On the other hand,Ä can be viewed
as the matrix representation of the bilinear form defined onL2([0, 2π ]2,R3) by

B(u1, u2) = 〈8(v − v′)u1, u2〉L2([0,2π ]2,R3) =
∫ 2π

0

∫ 2π

0
[8(v − v′)u1] · u2 dθ dθ ′

in the basis(I ,U,U ′). The positivity ofÄ then comes from the fact that8(v− v′) is a
3× 3 positive matrix.

Of course, the weak formulation (2.9) is equivalent to the following explicit expression
of the collision operator,

Q( f, f )(V) = Q‖(V)+ Q⊥(V) (2.17)

with

Q‖(V) = ∂‖
∫
R×R+
{A[∂‖(ln f )(V)− ∂‖(ln f )(V ′)]

+ B∂⊥(ln f )(V)− B′∂⊥(ln f )(V ′)} f (V) f (V ′)v′⊥ dV′ (2.18)

and

Q⊥(V) = 1

v⊥
∂⊥
∫
R×R+
{B[∂‖(ln f )(V)− ∂‖(ln f )(V ′)]

+C∂⊥(ln f )(V)− D∂⊥(ln f )(V ′)} f (V) f (V ′)v⊥v′⊥ dV′. (2.19)

Now, in order to obtain discretizations of the axisymmetric FPL operator that preserve
the conservation and entropy properties at the discrete level, we have to make sure that the
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discretization keeps the symmetry between the variablesV andV ′ that allows us to write
a weak formulation similar to (2.9) at the discrete level. Yet one problem in a such a
discretization is how to discretize near the axis under the constraints that all the physical
properties described above have to be satisfied. To overcome this problem, we first extend
the distribution functionf to an even function with respect to the orthogonal component
defined onR×R instead ofR×R+. To preserve this property during the time evolution, we
must have an even collision operator with respect to the orthogonal component. Observing
that if ψ(V) is even/odd with respect tov⊥ then ∂‖ψ(V) is even/odd and∂⊥ψ(V) is
odd/even with respect tov⊥, we obtain the following formulation in which the axis is not
a boundary of the integration domain as in (2.9):

PROPOSITION2.2. If f (V) is an even function with respect tov⊥ then the extension of
the collision operator Q( f, f ) defined by(2.9) to an even function(with respect tov⊥)
defined onR×R satifies, for all test functionψ(V) (even with respect tov⊥), the following
weak formulation,∫

R×R
Q( f, f )(V)ψ(V)|v⊥| dV

=−1

4

∫ ∫
(R×R)2

f (V) f (V ′)

 ∂‖ψ(V)− ∂‖ψ(V
′)

∂⊥ψ(V)

∂⊥ψ(V ′)


T

Ä̃(V,V ′)

×

 ∂‖(ln f )(V)− ∂‖(ln f )(V ′)

∂⊥(ln f )(V)

∂⊥(ln f )(V ′)

 |v⊥| |v′⊥| dV dV′ (2.20)

with

Ä̃(V,V ′) =

 Ã s(v⊥)B̃ −s(v′⊥)B̃
′

s(v⊥)B̃ C̃ −s(v⊥)s(v′⊥)D̃

−s(v′⊥)B̃
′ −s(v⊥)s(v′⊥)D̃ C̃′

 . (2.21)

Ã, B̃, C̃, D̃, B̃′, and C̃′ are the extension to(R×R)2 of A, B,C, D, B′, and C′ to even
functions with respect tov⊥ andv′⊥. s(x) is the usual sign function of x.

The matrixÄ̃(V,V ′) is still symmetric, positive, and semi-definite. Its nullspace is the
one-dimensional space spanned by(v‖ − v′‖, v⊥, v′⊥). Thus the new collision operator sat-
isfies the same physical properties as in Proposition2.1.

Now this symmetrized weak formulation is equivalent to the following explicit expression
of the collision operator defined on allR×R instead ofR×R+,

Q( f, f )(V) = Q‖(V)+ Q⊥(V) (2.22)

with

Q‖(V) = 1

2
∂‖
∫
R×R
{Ã[∂‖(ln f )(V)− ∂‖(ln f )(V ′)] + s(v⊥)B̃∂⊥(ln f )(V)

− s(v′⊥)B̃
′∂⊥(ln f )(V ′)} f (V) f (V ′)|v′⊥| dV′ (2.23)
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and

Q⊥(V) = 1

2|v⊥|∂⊥
∫
R×R
{s(v⊥)B̃[∂‖(ln f )(V)− ∂‖(ln f )(V ′)] + C̃∂⊥(ln f )(V)

− s(v⊥)s(v′⊥)D̃∂⊥(ln f )(V ′)} f (V) f (V ′)|v⊥| |v′⊥| dV′. (2.24)

3. COMPLETELY CONSERVATIVE AND ENTROPIC DISCRETIZATIONS

OF THE AXISYMMETRIC FPL OPERATOR

We consider a regular discretization ofR×R of the formVi = (i‖1v, (i⊥ + 1
2)1v) with

i = (i‖, i⊥)∈Z×Z, and1v>0. We will see that the “12 shift” in the discretization of the
orthogonal velocity component allows us to satisfy the property (a) of Proposition 2.1 at
the discrete level. We denote bȳf i or f̄ i‖,i⊥ an approximation off (Vi ) and sete‖ = (1, 0)
ande⊥ = (0, 1). Let D be a finite difference operator that approximates the axisymmetric
gradient(∂‖, ∂⊥). We denote byD‖ and D⊥ the corresponding finite difference operator
approximating∂‖ and∂⊥, i.e., D= (D‖, D⊥). Let D∗ = (D∗‖ , D∗⊥) the formal adjoint of
D. Then the evenness condition of the discretised distribution functionf̄ on the velocity
grid simply readsf̄ i‖,−i⊥ = f̄ i‖,i⊥−1= f̄ i−e⊥ . The following result gives an approximation
Q̄( f̄ , f̄ )i of Q( f, f )(Vi ) that satisfies the same condition of evenness asf̄ and all the
discrete analogues of the physical properties mentioned in Proposition 2.1.

PROPOSITION3.1. Let D= (D‖, D⊥) and D∗ = (D∗‖ , D∗⊥) be the two following finite
difference operators,(D‖ψ̄)i =

ψi+e‖−ψi

1v
, (D⊥ψ̄)i = ψi+e⊥−ψi−e⊥

21v

(D∗‖ ψ̄)i =
ψi−e‖−ψi

1v
, (D∗⊥ψ̄)i = ψi−e⊥−ψi+e⊥

21v .

(3.25)

Then we can define an approximation̄Q( f̄ , f̄ )i of Q( f, f )(Vi ) which is even(when f̄ is
even) with respect to the orthogonal component,

∑
i∈Z×Z

∣∣i⊥ + 1
2

∣∣Q̄( f̄ , f̄ )i ψ̄ i = −1

4

∑
(i, j )∈(Z×Z)2

∣∣i⊥ + 1
2

∣∣ ∣∣ j⊥ + 1
2

∣∣ f̄ i f̄ j

(D‖ψ̄)i − (D‖ψ̄) j

(D⊥ψ̄)i
(D⊥ψ̄) j


T

× Ä̃(Vi ,Vj )

D‖(ln f̄ )i − D‖(ln f̄ ) j

D⊥(ln f̄ )i

D⊥(ln f̄ ) j

(1v)3. (3.26)

Such a discretisation has the following properties:

(i) Conservation of mass, parallel momentum, and energy,

∑
i∈Z×Z

∣∣i⊥ + 1
2

∣∣Q̄( f̄ , f̄ )i

 1
i‖

i 2
‖ +

(
i⊥ + 1

2

)2

 = 0. (3.27)
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(ii) Discrete H-theorem,∑
i∈Z×Z

(
i⊥ + 1

2

)
Q̄( f̄ , f̄ )i (ln f̄ )i ≤ 0. (3.28)

(iii) The collisional invariants(i.e., the even sequences̄ψ such that
∑

i∈Z×Z |i⊥ + 1
2 |Q̄

( f̄ , f̄ )i ψ̄ i = 0 for all sequencef̄ ) are linear combinations of1, i‖, and i2‖ + (i⊥ + 1
2)

2. This
is equivalent to saying that the only discrete steady states(i.e., the sequences̄f such that
Q̄( f̄ , f̄ )= 0) are the discrete Maxwellians(i.e., the exponentials of linear combinations
of the above three quantities).

Proof. Using the finite difference operators given by (3.25), we define the approximation
Q̄( f̄ , f̄ )i of Q( f, f )(Vi ) by the explicit formulas

Q̄i ( f̄ , f̄ ) = Q̄‖i + Q̄⊥i (3.29)

with

Q̄‖i = −
1

2
D∗‖
∑
j∈Z

{
Ã(Vi ,Vj )[D‖(ln f̄ )i − D‖(ln f̄ ) j ] + s

(
i⊥ + 1

2

)
B̃(Vi ,Vj )D⊥(ln f )i

− s
(

j⊥ + 1
2

)
B̃(Vj ,Vi )D⊥(ln f ) j

}
f̄ i f̄ j

∣∣ j⊥ + 1
2

∣∣(1v)3 (3.30)

and

Q̄⊥i = −
1

2|i⊥ + 1/2|D
∗
⊥
∑
j∈Z

{
s
(
i⊥ + 1

2

)
B̃(Vi ,Vj )[D‖(ln f̄ )i − D‖(ln f̄ ) j ]

+ C̃(Vi ,Vj )D⊥(ln f )i − s
(
i⊥ + 1

2

)
s
(

j⊥ + 1
2

)
D̃(Vi ,Vj )D⊥(ln f ) j

}
× f̄ i f̄ j

∣∣i⊥ + 1
2

∣∣ ∣∣ j⊥ + 1
2

∣∣(1v)3. (3.31)

As in the continuous case, this discrete collision operator is even with respect to the orthog-
onal component. This fact is due to the specific properties of the finite difference operator
chosen above. Indeed, if̄f is even (f̄ i‖,−i⊥ = f̄ i‖,i⊥−1) thenD‖ f̄ is even andD⊥ f̄ is odd,
that is,(D‖ f̄ )i‖,−i⊥ = (D‖ f̄ )i‖,i⊥−1 and(D⊥ f̄ )i‖,−i⊥ =−(D⊥ f̄ )i‖,i⊥−1. Now from (3.29) and
by simple discrete integrations by parts, we obtain the weak formulation (3.26). The prop-
erty (i) is then obtained by taking successivelyψ̄ i = 1, i‖, andi 2

‖ + (i⊥ + 1
2)

2 in the weak
formulation and using the nullspace ofÄ̃. In the same way, we let̄ψ i = (ln f̄ )i and get the
discrete H-theorem thanks to the positivity of the matrixÄ̃.

Now let ψ̄ be a collisional invariant, that is,
∑

i∈Z×Z |i⊥ + 1
2 |Q̄( f̄ , f̄ )i ψ̄ i = 0 for all test

sequencef̄ . Taking f̄ = exp(ψ̄) and using the positivity of̃Ä we obtain (D‖ψ̄)i − (D‖ψ̄) j

(D⊥ψ̄)i
(D⊥ψ̄) j

 ∈ Ker Ä̃(Vi ,Vj ) for all (i, j ) ∈ (Z× Z)2. (3.32)

This implies the existence of realsλi j such that
(D‖ψ̄)i − (D‖ψ̄) j = λi j (i‖ − j‖),

(D⊥ψ̄)i = λi j
(
i⊥ + 1

2

)
(D⊥ψ̄) j = λi j

(
j⊥ + 1

2

) (3.33)
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for all (i, j )∈ (Z×Z)2. From the last two equalities we easily conclude thatλi j is inde-
pendent ofi and j . Let λi j = λ, and we have{

(D‖ψ̄)i = λi‖ + α
(D⊥ψ̄)i = λ

(
i⊥ + 1

2

)
,

(3.34)

whereλ andα are constants. Using the expressions ofD‖ andD⊥ given by (3.25), we obtainψ̄ i‖,2i⊥ =µ
(
i 2
‖ +

(
2i⊥ + 1

2

)2)+ αi‖ + β1

ψ̄ i‖,2i⊥+1=µ
(
i 2
‖ +

(
2i⊥ + 3

2

)2)+ αi‖ + β2

(3.35)

with µ, α, β1, andβ2 being real constants. Now we write the evenness condition on the
sequencēψ , ψ̄ i‖,−i⊥ = ψ̄ i‖,i⊥−1, and then getβ1=β2. In this last evenness identification, we
note the “12 shift” of the velocity grid in the orthogonal direction is of crucial importance.
Without this shifting, spurious (non-physical) collisional invariants appear with the use of
the centered finite difference operator in the orthogonal direction. Now iff̄ is a steady state
(i.e., Q̄( f̄ , f̄ )= 0) then we deduce from (3.26) that ln̄f is a collisional invariant and then
f̄ is a Maxwellian. This concludes the proof of (iii).

When the functionK arising in the expression of the coefficientsA, B,C, andD (2.15) is
given byK (|v|)= |v|γ , the exact computation of these coefficients is not possible in general
(in particular for the Coulombian caseγ =−3) because it involves elliptic integrals. On the
other hand, a numerical approximation of such integrals will be very expensive because this
would have to be done for each point of the velocity grid and at each time step. That is why
we choose to approximate these integrals by series expansions using exact computations of
trigonometrical integrals. We first set

a = (v‖ − v′‖)2+ v2
⊥ + v′2⊥ etb = −2v⊥v′⊥

and expand (2.16) as

3(V,V ′, cosη) = K (|v − v′|) = |v − v′|γ = |a+ bcosη|γ /2

= |a|γ /2
+∞∑
k=0

(γ /2)(γ /2− 1) · · · (γ /2− k+ 1)

k!

(
b

a
cosη

)k

.

We then insert this expansion in the expressions ofA(V,V ′), B(V,V ′), B(V,V ′), and
D(V,V ′) and obtain forA(V,V ′) (for instance) the expansion

A(V,V ′) = 2π |a|γ /2
(
v2
⊥ + v′2⊥ +

+∞∑
k=1

((
v2
⊥ + v′2⊥

)
γk + aγk−1

)(b

a

)k ∫ 2π

0
cosk η dη

)

with γ0= 1 andγk= (γ /2)(γ /2− 1) · · · (γ /2− k + 1)/k! for all k≥ 1. The odd terms
of this expansions vanish and the even terms are given by the following Wallis explicit
formula, ∫ 2π

0
cos2k η dη = 2π

1 · 3 · · · (2k− 1)

2 · 4 · · ·2k
.
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An approximation is then obtained for the coefficients of the matrixÄ by simply trun-
cating these expansions (the two or three first terms are sufficient in general). This approx-
imation does not affect the conservation properties. Indeed, a simple computation shows
that the vector(v‖ − v′‖, v⊥, v′⊥)) remains in the nullspace ofÄ(V,V ′) if we replace the
function3(V,V ′, cosη) in (2.15) and (2.16) by any other quantity (in particuler by its
expansion).

4. FAST ALGORITHMS

Our aim in this section is to reduce the numerical complexity (and then the computa-
tional cost) of the axisymmetric FPL operator. Precisely, we will show that the fast algo-
rithms developed for the 3-dimensional operator [5, 15] can also be applied in a cylindrical
geometry.

4.1. Sub-lattices method.Let a be an integer (a≥ 2), and let us define the following
approximation of the axisymmetric Landau operator on the same velocity grid as defined
above,

Q̄i [a] = Q̄‖i [a] + Q̄⊥i [a] (4.36)

with

Q̄‖i [a] = −1

2
D∗‖
∑
j≡i [a]

{
Ã(Vi ,Vj )[D‖(ln f̄ )i − D‖(ln f̄ ) j ]+ s

(
i⊥ + 1

2

)
B̃(Vi ,Vj )D⊥(ln f )i

− s
(

j⊥ + 1
2

)
B̃(Vj ,Vi )D⊥(ln f ) j

}
f̄ i f̄ j

∣∣ j⊥ + 1
2

∣∣(a1v)3 (4.37)

and

Q̄⊥i [a] = − 1

2
∣∣i⊥ + 1

2

∣∣D∗⊥ ∑
j≡i [a]

{
s
(
i⊥ + 1

2

)
B̃(Vi ,Vj )[D‖(ln f̄ )i − D‖(ln f̄ ) j ]

+ C̃(Vi ,Vj )D⊥(ln f )i − s
(
i⊥ + 1

2

)
s
(

j⊥ + 1
2

)
D̃(Vi ,Vj )D⊥(ln f ) j

}
× f̄ i f̄ j

∣∣i⊥ + 1
2

∣∣ ∣∣ j⊥ + 1
2

∣∣(a1v)3, (4.38)

where j ≡ i [a] means that thei − j components are a multiple ofa. This new discrete
operator is even when̄f is even with respect to the orthogonal component, and again
satisfies the weak formulation

∑
i∈Z×Z

∣∣i⊥ + 1
2

∣∣Q̄i [a]ψ̄i = −1

4

∑
i, j,i≡ j [a]

∣∣i⊥ + 1
2

∣∣ ∣∣ j⊥ + 1
2

∣∣ f̄ i f̄ j

(D‖ψ̄)i − (D‖ψ̄) j

(D⊥ψ̄)i
(D⊥ψ̄) j


T

× Ä̃(Vi ,Vj )

D‖(ln f̄ )i − D‖(ln f̄ ) j

D⊥(ln f̄ )i

D⊥(ln f̄ ) j

(a1v)3. (4.39)

Thus, this discretization satisfies the properties (i) and (ii) of Proposition 3.1 (conser-
vation and entropy). However, and as in the 3-dimensional case [5], the property (iii) of
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Proposition 3.1 is not satisfied. Non-physical collisional invariants (and then non-
Maxwellian steady states) can be generated by this approximation (see [5] for details) .
To solve this problem, we introduce the following new approximation:

PROPOSITION4.1. Let a and b be two mutually prime integers( for instance b=a+ 1),
and letQ̄i [a, b] be the following approximation of the axisymmetric FPL operator

Q̄i [a, b] = 1

2
(Q̄i [a] + Q̄i [b]). (4.40)

ThenQ̄i [a, b] satifises the properties(i ), (i i ), and(i i i ) of Proposition3.1.

Proof. The properties (i) and (ii) are straightforward. We prove the property (iii). Letψ̄

be a collisional invariant corresponding tōQ[a, b]. Then there exist realsλi j such that


(D‖ψ̄)i − (D‖ψ̄) j = λi j (i‖ − j‖),

(D⊥ψ̄)i = λi j
(
i⊥ + 1

2

)
(D⊥ψ̄) j = λi j

(
j⊥ + 1

2

) (4.41)

for all (i, j )∈ (Z×Z)2 such thati ≡ j [a] or i ≡ j [b]. From the last two equalities we easily
conclude thatλi j is independent ofi and j . Let λi j = λ. We have


(D‖ψ̄)i − (D‖ψ̄)i−ka = λak‖,

(D‖ψ̄)i−ka− (D‖ψ̄)i−ka−lb = λbl‖,

(D⊥ψ̄)i = λ
(
i⊥ + 1

2

) (4.42)

for all (i, k, l )∈ (Z×Z)3. Now remember thata andb are chosen to be mutually prime.
Then by the Bezout identity, for all(i, j )∈ (Z×Z)2 we can find(k, l )∈ (Z×Z)2 such that
i − j =ak+ bl. We then sum the first two equalities of (4.42) and obtain{

(D‖ψ̄)i − (D‖ψ̄) j = λa(i‖ − j‖),

(D⊥ψ̄)i = λ
(
i⊥ + 1

2

) (4.43)

for all (i, j )∈ (Z×Z)2. The situation is now the same as in the proof of (3.1). We then
conclude in the same way.

The interest of the sub-lattices method is of course its reduced cost. Instead of the quadratic
cost of the orderN2, the sub-lattices strategy requires onlyN2/a2+ N2/b2 whereN is the
total number of the regular velocity points in the discretized domain. In general we choose
b=a+ 1 and use alternativelya or b at each time step. WhenN is of the order of 1000
points, the integera can take the valuesa= 7 or 8 and then the computational cost is divided
by a factor of the order of 50.

4.2. Multigrid Monte Carlo method. In this section we present an algorithm which
reduces the complexity of the axisymmetric FPL operator (fromula (2.9)) fromO(N2) to
O(N ln N). This algorithm was already used in 3D computations [5]. Here we only do a
brief presentation in a particular case of cylindrical symmetry and refer the readers to [5]
for more details.
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For simplifications, let us assume that the domain of the integration is a square box of
length 1:C0=[0, 1]× [−1/2, 1/2]. The multigrid strategy consists on splittingC0 in several
parts according to the following hierarchy.

At Level one, we splitC0 into 4 equal square boxes (called its children)Cr
1 (r = 1 . .4)

andC0 is called their father. AtLevel two, we split eachCr
1 into 4 equal square boxes (its

children). and obtain 16 square boxes still denoted byCr
2 (r = 1 . . .16), etc. The center of a

square boxCr
k (of levelk) is denoted byθ r

k . We iterate this process until the finest mesh level
ng. LetCr

k andCr ′
k be two square boxes of levelk. We say thatCr

k andCr ′
k arewell separated

if they are separated at least by one square box of the same level, else we say that they are
neighbors. We also define and denote by Int(Cr

k) the interaction listof a given square box
Cr

k of level k, as the set of square boxesCr ′
k of the same levelk, which are well-separated,

and whose fathers are neighbors. Thus following this process, the weak formulation may
be written as∫

C0

Q( f, f )(V)ψ(V)|v⊥| dV

=−1

4

+∞∑
k=1

∑
r,r ′/Cr ′

k ∈Int(Cr
k)

∫ ∫
Cr

k×Cr ′
k

f (V) f (V ′)

 ∂‖ψ(V)− ∂‖ψ(V
′)

∂⊥ψ(V)

∂⊥ψ(V ′)


T

Ä̃(V,V ′)

×

 ∂‖(ln f )(V)− ∂‖(ln f )(V ′)

∂⊥(ln f )(V)

∂⊥(ln f )(V ′)

 |v⊥| |v′⊥| dV dV′. (4.44)

Now to discretize this weak formula, we introduce a regular discretization ofC0 in
N= 4n velocity pointsVi and use a Monte Carlo integration to evaluate the integrals on
well separated square boxes,∫ ∫

Cr
k×Cr ′

k

F(V,V ′) dV dV′ ∼ 4n−k
∑
i∈Cr

k

F
(
Vi ,Vσ(i )

)
(1v)4, (4.45)

where 4n−k is equal to the number of velocity points ofCr
k (or Cr ′

k ) andσ is a random
correspondence fromCr

k to Cr ′
k . This Monte Carlo integration permits the reduction of the

total computational cost fromN2 to N ln N.

4.3. Multipole expansions.This strategy is deterministic and is an alternative method
to the multigrid Monte Carlo method. We use the multigrid hierarchy to obtain integrations
on only well separated sets as in (4.44). Here we do not approximate these integrals by
Monte Carlo formulas as in (4.45) but use deterministic approximation based on multi-
pole expansions. In the sequel we explain briefly how the method can be applied to the
axisymmetric FPL operator and refer the readers to [15, 12] for more technical details
of the method. As for the 3-dimensional case [15], the main observation is that the ve-
locities V andV ′ in (4.44) are coupled only through the modulus of the relative velocity
3(V,V ′, cosη)= [(v‖ − v′‖)2+ v2

⊥ + v′2⊥ − 2v⊥v′⊥ cosη]γ /2 that appears in the expression
of the matrixÄ̃(V,V ′), otherwise, the double integrals in (4.44) can be written exactly
as a product (or sum of products) of simple ones and this fact reduces dramatically the
complexity of the operator. This is the case of Maxwellian molecules whereγ = 0. For
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γ 6= 0, we see that whenV ∈Cr
k and V ′ ∈Cr ′

k and whenCr
k and Cr ′

k are well separated
then we can approximate3(V,V ′, cosη) by its value3(V0,V ′0, cosη) at the centersV0

and V ′0 of Cr
k andCr ′

k ; this is calleda multipole approximation at the0 order (see [15]
for details). Thus all integrals onCr

k ×Cr ′
k arising in (4.44) can be written as a sum of a

products of simple integrals after such an approximation. The complexity of the formula
(4.44) is then seriously reduced. If one wants more accuracy then the relative velocity has
to be approximated by an expansion about its value3(V0,V ′0, cosη) at the centers ofCr

k

andCr ′
k ; this is calledmultipole expansions. In this paper, we only consider a multipole ap-

proximation at the 0 order. The numerical tests presented at the end of the paper show that
the order 0 suffices for a good approximation of the FPL operator. Note that the multipole
approximations only concern the term3(V,V ′, cosη); all the other terms in the matrix
Ä̃(V,V ′) are replaced by their exact value at the points of the velocity grid. At this level
of the application of multipole expansions, the total cost is reduced toO(N ln N) which is
the same as for the Monte Carlo method. The use of multipole approximations presents at
least two main advantages: the deterministic character of the strategy and its high accuracy.
Indeed, the order of the multipole expansions enables us to control the error of the method
and a very small order suffices to ensure a good accuracy. Note that only the order 0 suffices
to obtain almost the same accuracy as multigrid Monte Carlo methods. In the multipole
expansions, the approximation concerns only the relative velocity while all the terms under
the integrals (4.44) are approximated in Monte Carlo integrations; thus, for the particular
case of maxwellian potential (γ = 0), no approximation is needed and the multipole method
has the same accuracy as the quadratic discretization and has a linear complexity.

We recall that the complete use of the fast multipole method (FMM) introduced by
Greengard and Rokhlin [12] would give a complexity of the orderC N instead ofN ln N.
But the constantC is big and therfore the FMM method is only interesting for sufficiently
largeN. On the other hand, the use of an explicit in time scheme to solve the homogeneous
FPL equation leads to a CFL condition that does not allow large values ofN. This CFL
condition is explicitly established in the particular case of isotropic distribution functions
[4]. Thus, an interesting open problem is to find an implicit scheme to solve the homogenous
FPL equation which would be conservative, entropic, and non-expensive.

5. SOME NUMERICAL RESULTS

We choose the velocity domain of the formC0= [0, vmax]× [−vmax/2, vmax/2] and
consider a regular discretization inN points of this domain. As in [6], the weak formulation
(3.26) of the FPL operator can also be written for a bounded domain. The details about this
point are not given in this paper since the reduction to a bounded domain is performed in the
same way as in [6]. We takeN = (2n+ 1)× 2n. Precisely, the points of the velocity grid
are Vi = (i‖, i⊥ + 1

2)1v, with 0≤ i‖ ≤ 2n and−n≤ i⊥ ≤ n− 1. The velocity step is then
1v= vmax/2n. In all our numerical tests, we deal with a time-explicit scheme to solve the
homogeneous problem. The time step is computed at each iteration in time such that the
positivity of the distribution functionf is preserved. We shall consider the time evolutions
(under only collisional effects) of the following quantities:

• Discrete kinetic entropy,

Hd(t) =
∑

i∈Z×N

(
i⊥ + 1

2

)
f̄ i (t) log f̄ i (t)1v

3. (5.46)
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• Order 4 moment,

M(4)
d (t) =

∑
i∈×N

(
i⊥ + 1

2

)
(|i |1v)4 f̄ i (t)1v

3. (5.47)

• Discrete mass, parallel momentum and energy,
—mass

N (t) =
∑

i∈Z×N

(
i⊥ + 1

2

)
f̄ i (t)1v

3, (5.48)

—parallel momentum (or mean velocity)

i0‖1v = 1

N
∑

i∈Z×N

(
i⊥ + 1

2

)
i‖ f̄ i (t)1v

4, (5.49)

—energy

Ed(t) =
∑
i∈×N

(
i⊥ + 1

2

)
(|i |1v)2 f̄ i (t)1v

3. (5.50)

• Discrete temperatures,

T‖(t) =
∑

i∈Z×N

(
i⊥ + 1

2

)
[(i‖ − i0‖)1v]2 f̄ i (t)1v

3 (5.51)

T⊥(t) =
∑

i∈Z×N

(
i⊥ + 1

2

)[(
i⊥ + 1

2

)
1v
]2

f̄ i (t)1v
3 (5.52)

T(t) = 1

3
(T‖(t)+ 2T⊥(t)). (5.53)

• Relative quadratic error. Iff exact is an exact solution in the Maxwellian case [16],
and f is an approximate solution obtained by a numerical simulation starting from the
initial data f0(v)= f exact(0, v), then we define the quadratic error as

E Q(t) =
∑

i∈Z3

∣∣ f̄ i (t)− f̄ exact
i (t)

∣∣2∑
i∈Z3 f̄ exact

i (t)2
. (5.54)

The following numerical tests will concern both the Maxwellian case where the results
are compared with an analytic solution and the Coulombian case. The three fast algo-
rithms will be tested and compared: the sublattices method presented in Subsection 4.1,
the multigrid Monte Carlo method presented in Subsection 4.2, and the multigrid multipole
approximations presented in Subsection 4.3.

5.1. Maxwellian case(γ = 0). We take the initial distribution function in the class of
isotropic exact solutions of the homogeneous FPL equation found in [16]. The simplest one
is the following function which is isotropic about the mean velocityv0,

f exact(v, t) = MN ,v0,T (v)(1+ c2Q2[(v − v0)/vth] exp(−8×N × t)) (5.55)
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FIG. 1. Initial data f0(v‖, 0) and equilibrium state in the Maxwellian case.

with

Q2(v) = 1

120
(|v|4− 10|v|2+ 15). (5.56)

MN ,v0,T (v) is defined by (1.5) withv0= (vmax/2, 0), vth= 0.6,N = 5, andc2= 11. We
takevmax= 6. As the mean velocityv0 has no orthogonal component; this initial distribution
function is axisymmetric.

In Fig. 1 we can see that the final distribution function (obtained by the three numerical
algorithms of Section 4) coincides with the Maxwellian that has the same parameters
as the initial data. This shows equivalently that the only collisional invariants are linear
combinations of the mass, the parallel momentum, and the energy. In Fig. 2, we have
plotted the evolution in time of the entropy using the three algorithms together with the
exact evolution . We see that we obtain a good appoximation of the entropy with a little
bit more accurate results for the sublattices and multipole methods. The relative quadratic
errors between the exact analytic solution and the approximate solution are plotted in Figs. 3
and 4. We can also see that the sublattices and mutipole methods are more accurate than
the Monte Carlo method with a comparable computational cost (in terms of CPU time, see
Table I). Figures 1–4 are performed withN= 33× 16 velocity points. In Fig. 5 we give the
evolution in time of the relative quadratic errors for various velocity paths (or various values
of N). In Fig. 6 the evolutions in time of the order 4 moment makes clear the advantage of the
sublattices and multipole methods. Notice however that the relative variation of this moment
is small. In all the numerical tests of this paper, we use a time-explicit scheme. In Table I,
we give the CPU time per iteration (in time) required by the three algorithms and compare
them with the computational cost of the quadratic axisymmetric scheme (discretization of
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FIG. 2. Kinetic entropy in the Maxwellian case.

FIG. 3. Quadratic errors in the Maxwellian case.
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TABLE I

33× 16 65× 32
N 17× 8

Sublattices sizes 2, 3 2, 3 3, 4 5, 6 7, 8 10, 11

Sublattices 0.004 s 0.04 s 0.02 s 0.01 s 0.1 s 0.04 s
Multigrids MC 0.008 s 0.04 s 0.27 s
Multipole 0.001 s 0.003 s 0.008 s
Quadratic schemes 0.009 s 0.1 s 3.6 s

Proposition 3.1). These CPU times are carried out on the Computer DEC AlphaServeur 2100
4/275 OSF/1(Digital UNIX). Note that the computational costs of the multipole method are
smaller but this is only due to the particular form of the collision operator in the Maxwellian
case. In fact, the multipole method is of linear complexity in this case and has the same
accuracy as quadratic schemes. We shall see that in the Coulombian case the computational
cost of the zero-order multipole method is almost equivalent to those of the two other
methods.

FIG. 4. Quadratic errors for various sizes of sublattices.
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FIG. 5. Quadratic errors for various values of1v.

FIG. 6. Order 4 moment in the Maxwellian case.
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FIG. 7. Initial data f0(v‖, 0), final distribution, and Maxwellian function in the Coulombian case.

5.2. Coulombian case (γ =−3). In this case, we do not know any explicit solution of
the homogenous FPL equation. The initial data are chosen to be a bimaxwellian, that is,

f0(v) = 1

2
(MN ,v01,T (v)+ MN ,v02,T (v)), (5.57)

whereMN ,u,T is given by (1.5), andv01= (2, 0), v02= (4, 0). Again the two velocitiesv01

andv02 have no orthogonal component and then the initial data are axisymmetric. Finally
we takevth= 0.45 (thermal velocity) andN = 5 (density number of particles).

In Fig. 7, again we see that the final numerical distribution function coincides with the
Maxwellian whose parameters (mass, mean velocity, and temperature) are the macroscopic
quantities determined from the initial distribution . In Table II we give the maximum relative
error (with respect to their initial value) on the mass, the parallel momentum, and the energy.

In Fig. 8, we can see the decay of the entropy and again observe that the Monte Carlo
method relaxes to a slightly different state. The anisotropy of the initial data (about the mean
velocity) enables us to see the relaxations of the temperatures in parallel and orthogonal

TABLE II

Mass Momentum Energy

Sublattices 1.1360647E-06 3.0174860E-07 1.7855102E-06
Multigrids MC 1.0131008E-06 8.9009598E-07 1.1824987E-06
Multipole 1.7978964E-06 3.6916401E-07 1.0708056E-06
Quadratic schemes 1.1360647E-06 3.4645211E-07 1.9997715E-06
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FIG. 8. Kinetic entropy in the Coulombian case.

FIG. 9. TemperaturesTx = T‖, Ty= T⊥, andT in the Coulombian case.
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FIG. 10. Order 4 moment in the Coulombian case.

directions to the temperature of the Maxwellian equilibrium state (which is isotropic about
the mean velocity); see Fig. 9. In these last two tests and also in Fig. 10 we remark that the
mutipole method is a little bit less accurate than the two other methods (with the quadratic
scheme as a reference), but converges to the the right value. The increase of the accuracy of
the multipole method certainly needs mutipole expansions of higher orders but this would
naturally increase the computational cost of the method. The same observation can be done
in Fig. 10. Now, in order to illustrate the need of two sublattice sizes to eliminate spurious
collisional invariants (see Subsection 4.1), we plot in Fig. 11 two relaxations of the value
of f at the center of the grid. The first one is obtained by using only one sublattice size
a= 6, and the second uses two mutually prime integersa= 6 andb= 7. We then see that
the first curve does not converge to the value of the Maxwellain at the center of the grid.
Figures 7–11 are performed on a velocity grid withN= 33× 16 points.

The last test concerns the initial data

f0(v) = 0.01 exp{−10[(|v| − 0.3)/0.3]2}
which was tested in [18, 11]. The scheme in [18] leads to a final distribution function which
is different from the right Maxwellian. The scheme in [11] is conservative entropic and
converges to the right Maxwellian, but the computational cost is big (quadratic complexity)
and a perturbative process is needed (to obtain the right equilibrium). Here we have tested
this initial data on a grid withN= 65× 32 velocity points (see Fig. 12). We use a sublattice
method witha= 7 andb= 8 and obtain a conservative and entropic relaxation to the right
Maxwellian. In Fig. 12 we have plotted the distribution function at different time steps (ni
denotes the number of time-iterations) and can see the convergence to the right Maxwellian.
The computational cost of this simulation is divided by a factor of the order of 50 compared
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FIG. 11. Relaxation off (v0) using one and two sublattice sizes.

FIG. 12. Test with the initial data used in [18, 11].
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TABLE III

33× 16 65× 32
N 17× 8

Sublattices sizes 2, 3 2, 3 3, 4 5, 6 7, 8 10, 11

Sublattices 0.005 s 0.06 s 0.03 s 0.015 s 0.16 s 0.07 s
Multigrids MC 0.02 s 0.07 s 0.45 s
Multipole 0.01 s 0.005 s 0.3 s
Quadratic schemes 0.018 s 0.3 s 6.3 s

with the quadratic scheme. Finally, note that the Coulombian computations are a little bit
more expensive than Maxwellian ones because of the presence of a non-zero power of the
relative velocity in Coulombian interactions (γ =−3). Table III shows the CPU times (per
iteration in time) for the Coulombian case.

6. CONCLUSION

We have established a simplified expression of the FPL operator in a cylindrical geometry.
As for the three-dimensional case [6], this expression is written in a weak formulation
from which we have derived conservative and entropic discretizations. A symmetrization
and appropriate discretizations have been used to treat the problem near the axis (for the
cylindrical geometry). A second part of this work was concerned with the application of
fast algorithms to such discretizations. These algorithms were already shown to be efficient
in the three-dimensional case [5]. Various numerical tests were presented in this paper and
comparisons between these fast methods in both Coulombian and Maxwellian cases were
given.

The axisymmetric FPL eqation is of great interest for physical applications mainly in the
laser–plasma interactions and in astrophysics areas. For that purpose, the study of the space
inhomogeneouse case is necessary and will be investigated in a future work.
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