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We establish a simplified form of the axisymmetric Fokker—Planck—Landau op-
erator. In doing so, we derive a weak formulation of this operator on which we get
directly the conservation properties and the decay of the entropy as it is the case for
the three-dimensional operator. A symmetrized version of this formulation leads to
a class of numerical schemes which satisfy these physical properties at the discrete
level. Fast numerical algorithms used in previous works are shown to be efficient in
the cylindrical geometry. Finally, some numerical tests are presented at the end of
this paper. © 2000 Academic Press

1. INTRODUCTION

The Fokker—Planck—Landau (FPL) equation is used for the description of binary cc
lisions between charged particles, for which the interaction potential is the long-ran
Coulomb interaction. Iff (t, v) is the distribution function of particles (assumed to be
spatially homogeneous), then the homogeneous FPL equation is

% =Q(f, f)=V,. (/ D —V)(fO)VTQ) — f(v)Vf(v/))dv’). 1.1)
R3

Q(f, f)isthe FPL collision operatof (v) is the 3x 3 matrix

VQU

@) = K(WDI*Sw).,  S) =1ds = =5 (1.2)

S(v) is the orthogonal projector onto the plane orthogonal smdK (|v]) is an arbitrary
positive function which usually takes the value”. y is a real parameter which leads to
the usual classification in hard potentiajs> 0), Maxwellian moleculesy(=0), or soft
potentials { < 0). This latter case involves the Coulombian case itself {i.es,—3). For a
precise physical context of FPL operators, see [17, 13, 21, 22].
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The FPL collision operator is the limit of the Boltzmann operator for a sequence
scattering cross section which converges in a convenient sense to a delta function at :
scattering-angle [1, 9]. In the case of a Coulomb interaction, the FPL collision operator
obtained as the leading term of the cut-off Boltzmann operator when the parameter of
cut-off tends to zero [7]. The problem of the convergence (in some sense) of the solutic
to the homogeneous Boltzmann equation towards those of the FPL equations in the gra:
collisions limit has been investigated in a recent work [24]. This last study includes tf
physical interesting case of Coulomb interactions. In this paper we are concerned w
numerical aspects of the FPL operator in the particular case when the distribution funct
has a cylindrical symmetry with respect to the velocity variable. This geometry is a natul
context for the laser-produced plasma interactions.

The FPL operator can be written in a weak formulation as

1
/ Q(f, H(w)y(v)dv = —5// f() T )V (v)
RS JR3xR®

VYN @ —v)(V(n )

—V(n )@)) dvdv 1.3)
for any smooth test functiosr. From this duality relation, one can derive (at least formally)
the following physical properties oQ( f, f):

(i) Conservation of mass, momentum, and energy,

1 1

% /31:(7)) v dv | = /3 Q(f, f)(l)) v dv =0. (14)
) i § jvl?

(i) The equilibrium functions (or steady states), that is, the positive functiosisch
that Q(f, f) =0 are Maxwellians,

N —lv—uf?
M = . 1.
VT = ) eXp( 2 ) (-9)

N is the density number of particles ang is the thermal velocity which is linked to the
temperaturd of the gas by the relation

kT
Uth =\ —>
m
wherek is the Boltzmann constant) the mass of one particle, ands the mean velocity
of the particles.
We shall say that a functiow is a collisional invariant if

o(|jt</ f(t’”)‘/’(”)dv> =/Q(f, Hy@dv=0 vi>0. (16)
JR®

Then from (1.3) and using the nullsapce of the madrip — v’), we deduce that the colli-
sional invariants are the functioggv) such thatvyr (v) — Vi (v') is colinear tov — v’ for
all v andv’ in R3. Such functions are linear combinations of mass, momentum, and enert
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i.e., 1,v, and|v|?. Again from (1.3), we now observe thg(f, f) =0 if and only if In f
is a collisional invariant. The property (ii) is then equivalent to saying that the only collisionz
invariants are linear combinations ofd,,and|v|2. We refer to [6] for details.

(iii) H-theorem,

E(/ f(t,v)In f(t, v)dv) :/ Q(f, Hy(w)In(f(v))dv <0, a.7)
dt R3 R3

translating the decay of the kinetic entropy= /s f In f dv.

These are three fundamental properties that govern the evolution of particles inthe plas
A good numerical discretization of the FPL operator has to obey this physical behavior, a
so has to satisfy discrete analogues of the three properties. Such a discretization ensure
instance the relaxation (in time) of the distribution function to the right Maxwellian. Variou:
works have been concerned with numerical schemes for the FPL equation. We mentiol
particular [3] for the isotropic case and [19, 20, 25] for the axisymmetric problems. W
also refer to [10] for a time-implicit scheme to solve the FPL equation and to [14] fo
a mass conserving finite volume scheme. All these works satify at least one (usually 1
conservation of mass) of the above physical properties but never simultaneously both
them. Morever, such schemes are of quadratic complexity and the computational cos
big. In the recent past, discretizations of the three-dimensional FPL operator that satisfy
the above physical properties have been performed first in [6], and second in [5, 15] us
fast numerical algorithms. The use of a rapid numerical scheme is of crucial importan
when one wants to solve realistic problems in plasma physics, i.e., with the presence
the transport term or/and a self-consistent force term (Vlasov—Poisson—FPL system)
[23] a difference scheme to solve the Vlasov—Fokker—Planck system is introduced an
convergence result of this scheme is established in one dimension (for space and veloc
The operator considered in [23] is a linear and one-dimensional collisional operator. Fina
numerical analyis and approximations of other Fokker—Planck models in plasma phys
have been investigated in [8].

In this paper we are concerned with the expressions of the collision operator and
numerical discretizations when the distribution functifopresents a cylindrical symmetry.
More precisely, letl, J, K) be a canonical basis &°, and let us write any vectare R®
with cylindrical coordinates in the following way

V= U”l +v, U, U= (COS@)J ~|—(S|n9)K, v eR,v, € R+,9 € [O, 27T] (18)

A function f of v € R® presents a cylindrical symmetry (or is axisymmetric) if and only
if f depends only on the two componenjs= R andv, € R.. In all the sequel the distri-
bution functions are supposed to be axisymmetric. We denobgypyanda,  the partial
derivatives ofy with respect tov; andv,, whenyr is axisymmetric. Finally, if we set
V= (v, vy)andV’' = (vl/l, v’ ), then we prove that there is still a weak formulation similar
to (1.3) according to (2.9).

Replacingy successively by 1y, vﬁ + v2 in the weak formulation (2.9), we obtain the
conservation of mass, parallel momentum, and energy. Letting/newn f, we obtain the
decay of the entropy. Conversely, the only functigrfer which [;, R, Q(f, Hy(\VH)v(V)v,

dV =0 for all f (or equivalently for which the vecto,y (V) — 3w (V"), d ¥ (V),
a1y (V") is colinear to the vectaw; — vj, vy, v') forall vV, V' e R x R, ) are linear com-
binations of 1 v, vﬁ +v2. This fact can be proved as in the three-dimensional case [6].
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The numerical approximation of the axisymmetric operator entails a symmetrization
the continuous formulation with respect to the axis=£ 0). The functionsf and+r are
then extended t®R x R to even functions with respect to . Using this symmetrization,
we obtain a numerical scheme satisfying the conservation of mass, parallel momentum,
energy, the decay of the entropy, and the fact that the only steady states are Maxwelli
The present numerical study treats the Coulombian case (of physical interest) as wel
the Maxwellian casey(= 0) which enables us to compare the numerical results with exac
solutions [16].

Recently, conservative and entropy discretizations of the axisymmetric FPL opera
were investigated in [11], but our approach is different and simpler: first the expression
the operator is explicitly computed (the integration with respect to the angle is carried oL
and second, the spurious collisional invariants are eliminated in a very simple way and
perturbation process is needed. Furthermore, we show in Section 4 how the fast algoritt
that were preformed in a 3D computation can be applied in the cylindrical geometry ca:
These fast algorithms dramatically reduce the numerical cost without destroying the phys
properties of the scheme and its accuracy.

The paper is organized as follows: In Section 2 we present a simple expression of
axisymmetric FPL operator and give a symmetrized version with respect to the axis.
Section 3 we present a numerical discretization of the axisymmtric FPL operator tf
preserves all the physical properties described above at the discrete level. In Sectic
we show how to use fast algorithms without affecting the properties of the scheme and
accuracy. Finally, in Section 5 we give some numerical tests illustrating the efficiency
such discretizations and such algorithms.

2. EXPRESSIONS OF THE AXISYMMETRIC FPL OPERATOR

ProposiTION2.1. If f only depends on ¥ (v, v1), then

() Q(f, f)onlydependsonV.
(i) There exists & x 3matrix Q(V, V'), symmetri¢positive semi-definitesuch that

Qf, HV)¥(V)vodV

RxR.
. QY (V) — (V) |
:_5// f(V) (V) v (V) Q\V,V)
(RXR)2
Ly (V)
3;(In £)(V) — 3, (In F)(V")
X 3. (In f)(V) v v, dvdVv (2.9)

aL(In F)(v")
for all test functiong) (V). The nullspace of2 (V, V') is

!
v =

KerQ(V,V)=R v if (v — v, ve,v)) #(0,0,0). (2.10)

/
vy
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From these properties of2 (V, V’) and the weak formulatio¢2.9), we deduce the following
properties on the collisional operator

(a) The collisional invariants are linear combination of magarallel momentum
and energy. That isif fomQ(fv Y)Y (V)v, dV =0, for all f theny is a linear

combination ofl, v andvf + v%.
(b) The H-theorem

Q(f, H(\V)In fF(V)v, dV <0  VH, (2.11)
RxR;

the left-hand-side of2.11) is equal to0 if and only if f is a Maxwellian
f(V) = exp(Cl + szH + Cg(vﬁ + UJz_))

with Cy, C,, and G being real constants. This property translates the decay of the kineti
entropy(in the homogeneous cgse

g(/ f(V)lnf(V)deV)fo.
dt \ Jrxr,

Proof. (i) This is a straightforward consequence of the invariance under orthogon
transformations ofR® of the FPL operator:Q(f o R, f o R)y=Q(f, f)o R for any
orthogonal transformatioR of R®.

(ii) By using the notations (1.8), the 3-dimensional gradient of an axisymmetric func
tion ¢» may be written as

Vy(V) =iy (I + iy VU, Vy(V) =9y (V)1 +aryp(VHU'. (2.12)

Inserting these expressions in the 3-dimensional expression (1.3), and making the cy
drical change of variables in the integrals, we obtain the weak formulation (2.9). In particul:

the matrix2 is given by
A B -B
QV,V=| B c -D (2.13)

-B -D (C
with

A= ANV, V) = [Z[Z1Tow—v) dodo,
B=B(V,V)= [ [ZUTdw—v)ldod 214
C=C(V,V) = [Z [ZUTo®w—v)Udode, '

D=D(V,V) = [Z [FUTd@w—v)U'dg de,

wherex - y denotes the scalar product i&® betweenx andy. First we see thaf2 is
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symmetric. Simplified expressions &f B, C, andD can be obtained after a few calcula-
tions,

A=AWV,V) = 271[02” A(V, V', cosn) (vi 4+ v/2 — 2v v cosn) dn

B = B(V, V/) = —271]'02” A(V, V/, COS]’])(UH — vl/l)(vL — vj_ COST]) dn (2 15)
C=C(V,V)) =21 [Z* AV, V', cosi [(v) — v))? + v/2sir? n] dn '

D=D(V,V)= anozn AV, V', cosn)[(v) — vl/‘)2 cosn + v v/, sir? n| dn,
where
AV, V', cosn) = K ([(v) — v + 0% +vZ — 20,0, cosy] %) (2.16)

and K is the function arising in the definition of the matrix given by (1.2).A and D
are symmetric with respect ¥ andV’: A(V,V’)=A\V’, V) andD(V, V') =DV’, V).
Instead,B andC are not symmetric and we sBt = B(V’, V) andC’'=C(V’, V). Using
these formulae, we easily check that

v = v
vy cKerQ(V, V).

v
Furthermore, the rank of the matriX is equal to 2 wher{v — v|, v., v ) #0. Indeed,
by Cauchy—Schwartz inequality, we haBé < AC and D? < CC’ and the equalities hold
simultaneously if and only ity — vj = v, =v) =0. On the other hand? can be viewed
as the matrix representation of the bilinear form defined. &0, 2712, R®) by

2t 27
B(ula U2) = (CD(U - U/)ul’ UZ) L2([0,27]2,R3) = / / [CD(U — v/)Ul] - Uo de do’
0 0

in the basig(l, U, U’). The positivity of @ then comes from the fact thdt(v —v') is a
3 x 3 positive matrix.

Of course, the weak formulation (2.9) is equivalent to the following explicit expressio
of the collision operator,

Q(f, H(V) =Q(V)+ Q.r(V) (2.17)
with
Q=3 [ (AL n DY) =y (V)
+BaL(In F)(V) — B'a(dn HVH V) F(V), dV (2.18)
and

1
Q) = ~a, / (B[3,In £(V) — 3y (In (V)]
vyl RxR,
+CaL(In F)(V) — DaL(n DV FV) F (VDo dV.  (2.19)

Now, in order to obtain discretizations of the axisymmetric FPL operator that preser
the conservation and entropy properties at the discrete level, we have to make sure tha
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discretization keeps the symmetry between the varidlaadV’ that allows us to write

a weak formulation similar to (2.9) at the discrete level. Yet one problem in a such
discretization is how to discretize near the axis under the constraints that all the physi
properties described above have to be satisfied. To overcome this problem, we first ext
the distribution functionf to an even function with respect to the orthogonal componen
defined orR x Rinstead ofR x R, . To preserve this property during the time evolution, we
must have an even collision operator with respect to the orthogonal component. Obser
that if (V) is even/odd with respect to, thend;y (V) is even/odd and ¢ (V) is
odd/even with respect to, , we obtain the following formulation in which the axis is not
a boundary of the integration domain as in (2.9):

PropPosITION2.2. If f (V) is an even function with respectio then the extension of
the collision operator Qf, f) defined by2.9) to an even functioriwith respect tov, )
defined oR x R satifies for all test functiony (V) (even with respectto, ), the following
weak formulation

Q(f, HVIY (V)lvLldV

RxR
. (V) — (VY |
-3 / / FV)FV) 3,y (V) Qv V)
(RxRR)2
(V)
8” (In fYv) — 8”('” IBICA)
x 3,.(In F)(V) luo | v, dV dV/ (2.20)
. (Inf)v)
with
A s(v,)B —s(v')) B/
QV,V)=| sw,)B c —s(v)s()D | . (2.21)
—s(w')B  —s(v)s(v,)D ol

A B,C, D, B/, andC’ are the extension taR x R)2 of A, B,C, D, B/, and C to even
functions with respect to, andv’, . s(x) is the usual sign function of x.

The matrix2(V, V') is still symmetric positive and semi-definite. Its nullspace is the
one-dimensional space spanned(by— v, v, v/ ). Thus the new collision operator sat-
isfies the same physical properties as in Proposif#idn

Now this symmetrized weak formulation is equivalent to the following explicit expressiol
of the collision operator defined on &l x R instead ofR x R,

Q(f, HH(V) = Qu(V) + QL(V) (2.22)
with
1 ~ -
QH (V) = EBH/R R{A[BH(In f)(V) — 8H(In f)(V/)] + S(vl)BaL(In f)(V)

— s )B3L(n FYNVHY V) F V), | dV/ (2.23)
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and

1 ~ -
QL(V) = 8J_/ {s(v)B[3;(In F)(V) —9(In F)(V)] +Ca.(In f)(V)
2|v, | RxR

—s(w1)s)DaL(n HYVH} V) V) up| v |dV. (2.24)

3. COMPLETELY CONSERVATIVE AND ENTROPIC DISCRETIZATIONS
OF THE AXISYMMETRIC FPL OPERATOR

We consider a regular discretization®fx R of the formV; = (i, Av, (i, + %)Av) with
i =(iy,i.) €Z x Z, andAv > 0. We will see that the%‘ shift” in the discretization of the
orthogonal velocity component allows us to satisfy the property (a) of Proposition 2.1
the discrete level. We denote H} or f_i”,u an approximation off (V;) and se; = (1, 0)
ande, = (0, 1). Let D be a finite difference operator that approximates the axisymmetri
gradient(d, 9, ). We denote byD; and D, the corresponding finite difference operator
approximatingd, andd,, i.e., D=(Dy, D,). Let D*= (Dj, DY) the formal adjoint of
D. Then the evenness condition of the discretised distribution fundtion the velocity
grid simply readsf.H S, = f.H 1= f. —e,- The following result gives an approximation
Q(f, ) of Q(f, f)(V,) that satisfies the same condition of evennes$ asd all the
discrete analogues of the physical properties mentioned in Proposition 2.1.

PROPOSITION3.1. Let D=(Dy, D,) and D*=(Dj, D7) be the two following finite
difference operators

Vie —Vi Vice, — ¥ (3.29)
(Djy) = " (D) = s,

{(D..w). =Tt (Duy = e

Then we can define an approximatioji f, f_)i of Q(f, f)(V;) which is evenwhen fis
even with respect to the orthogonal component

(Dyy)i — (D),
_ — - = = 1 . _ — — -
Z|u+%|Q(f,f)i1/fi=—Z S i+ fif (D)
i€ZXZ (i.j)e@x2)? (Dﬂ/?)j
D”(In f_)i - D”(In f_)j
x Q(M, V) D.(n f) (Av)°. (3.26)
Dy (n f);
Such a discretisation has the following properties
(i) Conservation of masgarallel momentumand energy
1
> lis+3lQcf, £y i =0. (3.27)

| €ZXT i||2+(iL+%)2
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(i) Discrete H-theorem

> (i +3)Q(f, fdn f) <o. (3.28)

i€ZXZ

(iii) The collisional invariantsi.e., the even sequencep_ssuch thatzIeZXZ lip+1 |(5
(f_ f_) ¢_| = Ofor all sequence ) are linear combinations df, i}, and i ||| + (L + 1)2, This
is equivalent to saying that the only discrete steady states the sequences such that
Q(f, f)=0) are the discrete Maxwelliang.e., the exponentials of linear combinations

of the above three quantities
Proof. Using the finite difference operators given by (3.25), we define the approximatic

Q(f, f); of Q(f, f)(Vi) by the explicit formulas
Q(f. f)=Q +QF (3:29)
with

_ 1 - _ — -
Q' =507 > {AM. VIDy(n £ = Dydn ;] +5s(i. +3)BM. V))Du(in

jezZ
—s(jL+ 1) BV, V)DL £} i f]j + 1] (Av)3 (3.30)
and
= 1 , - _ _
Ql = _ijg{s(u + 1) B(V;, V)IDy(n f); — Dy(In f);]
+C (M, VpDL(n £)i —s(is +3)s(jL + 1) D(Vi, VD.L(In f);}
< fi i+ 3] L + 2avn (3.31)

As in the continuous case, this discrete collision operator is even with respect to the orth
onal component. This fact is due to the specific properties of the finite difference opera
chosen above. Indeed, ffis even (fIH i, = fiji,—1) thenDy f is even andDLf is odd,
thatis,(D, f).H,,.L =(Dy f)lH,.l rand(Dy f)i, i, =—(Dy f)i, i, 1. Now from (3.29) and
by simple discrete integrations by parts, we obtain the weak formulation (3.26). The pro
erty (i) is then obtained by taking successw&iy 1y, and| T+ (i + 1)2 in the weak
formulation and using the nullspace@f In the same way, we Ie.,&. =(In f). and get the
discrete H-theorem thanks to the positivity of the mageix

Now Ieh/; be a collisional invariant, that i3,; ..., liL + 1Q(f, )iy =0 for all test
sequencef . Taking f = exp(y/) and using the positivity of2 we obtain

(Dy¥)i — (Dy¥);
(DY) e KerQM,V,) forall(,j)e@Zx2)? (332
(D1¥);
This implies the existence of realg such that
(Du‘;_)i — (DY) = Aij iy — i,
(Duy)i = A (ir+13) (3.33)
(D1y)j =4ij(jL + 3)
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for all (i, j) € (Z x Z)2. From the last two equalities we easily conclude thats inde-
pendent of andj. Let;; =2, and we have
Dyy)i = Ay +
(Dyf)i = My + o . (3.34)
(DLy)i = A(u + 5),

wherei ande are constants. Using the expressionBpaindD ; given by (3.25), we obtain

%H,Zii =/L(Iﬁ+ (ZIL + %)2) +O!iH + ﬂl

_ (3.35)
wiH,Zil+1=M(if + <2iJ_ + %)2) +aiy + B2
with u, o, B1, and B, being real constants. Now we write the evenness condition on th
sequence, Vi, _i, = Vi, i,—1, and then ges = B,. In this last evenness identification, we
note the 4 shift” of the velocity grid in the orthogonal direction is of crucial importance.
Without this shifting, spurious (non-physical) collisional invariants appear with the use
the centered finite difference operator in the orthogonal direction. Ndvisifa steady state

(i.e., Q(f, f)=0) then we deduce from (3.26) that fnis a collisional invariant and then
f is a Maxwellian. This concludes the proof of (iii)m

When the functiorK arising in the expression of the coefficiedtsB, C, andD (2.15) is
given byK (Jv|) = |v|¥, the exact computation of these coefficients is not possible in gener
(in particular for the Coulombian cage= —3) because it involves elliptic integrals. On the
other hand, a numerical approximation of such integrals will be very expensive because
would have to be done for each point of the velocity grid and at each time step. That is w
we choose to approximate these integrals by series expansions using exact computatio
trigonometrical integrals. We first set

a=(y — U\/I)Z +v2 +v%eth=—2v,v)
and expand (2.16) as

AV, V', cosp) = K(lv—v/|) = |v—2'|” = |a+ bcosp|"/?

(y)2— k+1)< cos )"
a m)

IV/ZZ ¥/2(r/2-1)--

= k!

We then insert this expansion in the expression®\¢¥, V'), B(V, V'), B(V, V'), and
D(V, V') and obtain forA(V, V') (for instance) the expansion

kK pon
AV, V)—2n|a|y/2<vl+vl+z UJ_+UJ_ +ayk1)(g) / COé‘ndn)
0

with yo=1 andy=(y/2)(y/2—-1)---(y/2 — k+ 1)/k! for all k> 1. The odd terms
of this expansions vanish and the even terms are given by the following Wallis explit
formula,

2n
K _ (2k-1)
/o condn =27 —2-4~~~2k
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An approximation is then obtained for the coefficients of the mawiay simply trun-
cating these expansions (the two or three first terms are sufficient in general). This appr
imation does not affect the conservation properties. Indeed, a simple computation shc
that the vectol(v) — v, vy, v/ )) remains in the nullspace &t (V, V') if we replace the
function A(V, V', cosp) in (2.15) and (2.16) by any other quantity (in particuler by its
expansion).

4. FAST ALGORITHMS

Our aim in this section is to reduce the numerical complexity (and then the comput
tional cost) of the axisymmetric FPL operator. Precisely, we will show that the fast alge
rithms developed for the 3-dimensional operator [5, 15] can also be applied in a cylindric
geometry.

4.1. Sub-lattices methodLet a be an integerg > 2), and let us define the following
approximation of the axisymmetric Landau operator on the same velocity grid as defin
above,

Qilal = Q/[a] + Qi[al (4.36)
with
Qlla] = D;; > {AM. VPIDy(n £)i = Dydn £);]1+ (i1 + 3) BV, V)DL (In ),
j=i[a]
—s(jL+ 3BV, V)DL (n )} i f]j + i @Av)® (4.37)
and

Q'lal = - Di Y {s(iL+2)B(V. VpIDy(In f); — Dy(In )]

L+3 ‘ i=ila]

+C<vi,vj>DL<ln £)i —s(is+3)s(js + 3) DV, V)DLdn f);}

X ﬂﬂ\iur%Hth%\(aAv)? (4.38)
where j =i[a] means that thé — j components are a multiple af This new discrete

operator is even wheri is even with respect to the orthogonal component, and agai
satisfies the weak formulation

o 1 e (D) _£D||J)j
Zru+%|Qi[a]wi=—21 S fic+3] i+ 3] fif (DY),
i €ZXT i,j,i=j[a] (Dlw_)j
D||(|I"I f_)i — D”(In f_)j
x Q(Vi, Vj) D (In f); (aAv)®. (4.39)

Di(n f_)j

Thus, this discretization satisfies the properties (i) and (ii) of Proposition 3.1 (conse
vation and entropy). However, and as in the 3-dimensional case [5], the property (iii)
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Proposition 3.1 is not satisfied. Non-physical collisional invariants (and then not
Maxwellian steady states) can be generated by this approximation (see [5] for detail:
To solve this problem, we introduce the following new approximation:

PrOPOSITION4.1. Leta and b be two mutually prime integéror instance b=a + 1),
and letQ;j[a, b] be the following approximation of the axisymmetric FPL operator

Qfa,b] = (Gl + Qiib). (4.40)

Then(ii[a, b] satifises the propertie$), (ii ), and(iii ) of Proposition3.1.

Proof. The properties (i) and (i) are straightforward. We prove the property (iii)yLet
be a collisional invariant corresponding@ja, b]. Then there exist reals; such that

(D\\@i — (D)} = ij iy — Jy),
(DJ_}[i)i = Aij (ij_ + %) (4.41)
(D1v)j=hij(jr+3)

forall (i, j) € (Z x Z)?> such that = j[a] ori = j[b]. From the last two equalities we easily
conclude thatj is independent df and j. Let A;; = A. We have

(Dlllg)i - (D||1/7)i—_ka = rak,
(Dy 1/f_)i7ka — (Dy¥)i—ka—ib = Ably, (4.42)
(Diy)i =i+ 3)

for all (i, k, |) € (Z x Z)2. Now remember thaa andb are chosen to be mutually prime.

Then by the Bezout identity, for all, j) € (Z x Z)? we can findk, 1) € (Z x Z)? such that

i — ] =ak+ bl. We then sum the first two equalities of (4.42) and obtain

Dy — (Dyw)i = Aaly — jp,

Dy = ( H.W)I ) (= (4.43)
(Diy)i = A(iL+ 3)

for all (i, j) € (Z x Z)?. The situation is now the same as in the proof of (3.1). We ther
conclude in the same waym

Theinterest of the sub-lattices method is of course its reduced cost. Instead of the quad!
cost of the ordeNZ, the sub-lattices strategy requires oiN¥/aZ + N2/b? whereN is the
total number of the regular velocity points in the discretized domain. In general we choa
b=a+ 1 and use alternativelg or b at each time step. WheN is of the order of 1000
points, the integea can take the values= 7 or 8 and then the computational cost is divided
by a factor of the order of 50.

4.2. Multigrid Monte Carlo method.In this section we present an algorithm which
reduces the complexity of the axisymmetric FPL operator (fromula (2.9)) fdgiN?) to
O(N In N). This algorithm was already used in 3D computations [5]. Here we only do
brief presentation in a particular case of cylindrical symmetry and refer the readers to
for more details.
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For simplifications, let us assume that the domain of the integration is a square box
length 1:Co =[0, 1] x [-1/2, 1/2]. The multigrid strategy consists on splittifigin several
parts according to the following hierarchy.

At Level onewe splitCy into 4 equal square boxes (called its childréplr =1..4)
and(Co is called their father. At.evel twg we split eactC} into 4 equal square boxes (its
children). and obtain 16 square boxes still denotedhy =1...16), etc. The center of a
square box’j (of levelk) is denoted by . We iterate this process until the finest mesh level
ng. LetCl andC} be two square boxes of leviel We say that andC} arewell separated
if they are separated at least by one square box of the same level, else we say that the)
neighbors We also define and denote by |id},) theinteraction listof a given square box
Cp of levelk, as the set of square boxgs of the same levek, which are well-separated,
and whose fathers are neighbors. Thus following this process, the weak formulation rr
be written as

. Qf, HV)Y (V)| dV

T

- DY (V) — BB (V)
)| /C Lt | ) SV, V')

4 k=1rr//Ctelnt(Cr) ALY (V)
BH (ln f)(V) — 8||(|n f)(V’)
x 91(n £)(V) il V) dV dV. (4.44)

a,.(In f)Vv’)

Now to discretize this weak formula, we introduce a regular discretizatiofy oh
N = 4" velocity pointsV; and use a Monte Carlo integration to evaluate the integrals ol
well separated square boxes,

// FOV.V)dV dV ~ 453 " F(Vi, Vo) (Av)*, (4.45)
1xCY

i r
ieCy

where 4% is equal to the number of velocity points 6f (or C) ando is a random
correspondence fro@}, to Cl.. This Monte Carlo integration permits the reduction of the
total computational cost frorl? to N In N.

4.3. Multipole expansions.This strategy is deterministic and is an alternative method
to the multigrid Monte Carlo method. We use the multigrid hierarchy to obtain integratior
on only well separated sets as in (4.44). Here we do not approximate these integrals
Monte Carlo formulas as in (4.45) but use deterministic approximation based on mul
pole expansions. In the sequel we explain briefly how the method can be applied to 1
axisymmetric FPL operator and refer the readers to [15, 12] for more technical deta
of the method. As for the 3-dimensional case [15], the main observation is that the v
locitiesV andV’ in (4.44) are coupled only through the modulus of the relative velocity
AV, V', cosn) =[(v) — v)?+v? + v —2v, 0/ cosn]”/? that appears in the expression
of the matrix2(V, V'), otherwise, the double integrals in (4.44) can be written exactly
as a product (or sum of products) of simple ones and this fact reduces dramatically
complexity of the operator. This is the case of Maxwellian molecules whetd®. For
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y #0, we see that wheN € C} andV’eC[ and whenC} andC}  are well separated
then we can approximat&(V, V', cosy) by its valueA (Vo, Vg, cosn) at the centerd/y
andV; of CL andC[; this is calleda multipole approximation at the order (see [15]
for details). Thus all integrals o8}, x C{" arising in (4.44) can be written as a sum of a
products of simple integrals after such an approximation. The complexity of the formu
(4.44) is then seriously reduced. If one wants more accuracy then the relative velocity |
to be approximated by an expansion about its vali¥y, V;;, cosn) at the centers oEj
andC}’; this is calledmultipole expansionsn this paper, we only consider a multipole ap-
proximation at the 0 order. The numerical tests presented at the end of the paper show
the order 0 suffices for a good approximation of the FPL operator. Note that the multipc
approximations only concern the term(V, V', cosn); all the other terms in the matrix
Q(V, V') are replaced by their exact value at the points of the velocity grid. At this leve
of the application of multipole expansions, the total cost is reduc&i®In N) which is
the same as for the Monte Carlo method. The use of multipole approximations present
least two main advantages: the deterministic character of the strategy and its high accur
Indeed, the order of the multipole expansions enables us to control the error of the metl
and a very small order suffices to ensure a good accuracy. Note that only the order O suff
to obtain almost the same accuracy as multigrid Monte Carlo methods. In the multipc
expansions, the approximation concerns only the relative velocity while all the terms unc
the integrals (4.44) are approximated in Monte Carlo integrations; thus, for the particul
case of maxwellian potential (= 0), no approximation is needed and the multipole methoc
has the same accuracy as the quadratic discretization and has a linear complexity.

We recall that the complete use of the fast multipole method (FMM) introduced b
Greengard and Rokhlin [12] would give a complexity of the or@ét instead ofN In N.
But the constanC is big and therfore the FMM method is only interesting for sufficiently
largeN. On the other hand, the use of an explicit in time scheme to solve the homogene«
FPL equation leads to a CFL condition that does not allow large valudk dhis CFL
condition is explicitly established in the particular case of isotropic distribution function
[4]. Thus, aninteresting open problem is to find an implicit scheme to solve the homogenc
FPL equation which would be conservative, entropic, and non-expensive.

5. SOME NUMERICAL RESULTS

We choose the velocity domain of the folfp=[0, vmax] x [—vmax/2, vmax/2] and
consider a regular discretizationhMpoints of this domain. As in [6], the weak formulation
(3.26) of the FPL operator can also be written for a bounded domain. The details about
point are not given in this paper since the reduction to a bounded domain is performed in
same way as in [6]. We takld = (2n+ 1) x 2n. Precisely, the points of the velocity grid
areVi =@y, i+ %)Av, with 0<i; <2n and—n <i; <n—1. The velocity step is then
Av =vmax/2n. In all our numerical tests, we deal with a time-explicit scheme to solve th
homogeneous problem. The time step is computed at each iteration in time such that
positivity of the distribution functiorf is preserved. We shall consider the time evolutions
(under only collisional effects) of the following quantities:

e Discrete kinetic entropy,

Ha) = Y (iL+3) fi)log fit) av®. (5.46)

i€ZxN
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e Order 4 moment,

MP® =" (i +3)ilAv)* i) AV, (5.47)

iexN

o Discrete mass, parallel momentum and energy,
—mass

NO =D (io+3)fi)av, (5.48)

i€ZxN

—parallel momentum (or mean velocity)

ig Av = % S i+ )i fi av’, (5.49)
i€ZxN
—energy
Ea) = > (iL+3)(ilav)fit) Av>. (5.50)
iexN

o Discrete temperatures,

Tt = Y (in+ 3y —iopAv]?fi) Av? (5.51)
i€eZxN

T = > (iL+3)[(c+3av)*fi) av (5.52)
i€eZxN
1

Tt = §(T||(t) + 2T, (1)). (5.53)

o Relative quadratic error. If ®2¢tis an exact solution in the Maxwellian case [16],
and f is an approximate solution obtained by a numerical simulation starting from th
initial data fo(v) = 20, v), then we define the quadratic error as

ZieZS‘ ﬂ(t) — f_ieXact(t)’2
Diezs FEOCD)2 :

EQt) = (5.54)

The following numerical tests will concern both the Maxwellian case where the resul
are compared with an analytic solution and the Coulombian case. The three fast al
rithms will be tested and compared: the sublattices method presented in Subsection
the multigrid Monte Carlo method presented in Subsection 4.2, and the multigrid multipo
approximations presented in Subsection 4.3.

5.1. Maxwellian cas¢y =0). We take the initial distribution function in the class of
isotropic exact solutions of the homogeneous FPL equation found in [16]. The simplest ©
is the following function which is isotropic about the mean velooiy

20, 1) = My .1 (V) (1 + C2Q2[ (v — vo)/vin] €XP(—8 x N x t))  (5.55)
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4.0

—— |Initial data
——— Final result and Maxwellian

3.0 -

20

distribution function

1.0

0.0 ' - / \ .
2.0 4.0

0.0

6.0
paralle! velocity

FIG. 1. Initial data fo(v;, 0) and equilibrium state in the Maxwellian case.
with

1 4 2
Qo(v) = @(M — 10jv|“ + 15). (5.56)
My 1.7 (v) is defined by (1.5) withg = (vmax/2, 0), v, = 0.6, N'=5, andc, = 11. We
takevmax= 6. As the mean velocity, has no orthogonal component; this initial distribution
function is axisymmetric.

In Fig. 1 we can see that the final distribution function (obtained by the three numeric
algorithms of Section 4) coincides with the Maxwellian that has the same paramet
as the initial data. This shows equivalently that the only collisional invariants are line:
combinations of the mass, the parallel momentum, and the energy. In Fig. 2, we he
plotted the evolution in time of the entropy using the three algorithms together with tt
exact evolution . We see that we obtain a good appoximation of the entropy with a litt
bit more accurate results for the sublattices and multipole methods. The relative quadr
errors between the exact analytic solution and the approximate solution are plotted in Fig
and 4. We can also see that the sublattices and mutipole methods are more accurate
the Monte Carlo method with a comparable computational cost (in terms of CPU time, s
Table I). Figures 1-4 are performed with= 33 x 16 velocity points. In Fig. 5 we give the
evolution in time of the relative quadratic errors for various velocity paths (or various valus
of N). In Fig. 6 the evolutions in time of the order 4 moment makes clear the advantage of t
sublattices and multipole methods. Notice however that the relative variation of this mome
is small. In all the numerical tests of this paper, we use a time-explicit scheme. In Table
we give the CPU time per iteration (in time) required by the three algorithms and compe
them with the computational cost of the quadratic axisymmetric scheme (discretization
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FIG. 2. Kinetic entropy in the Maxwellian case.
0.0010 T v
—— Multigrid Monte Carlo Method
Sublattices method , a=5,b=6.
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0.0004
0.0002
0.0000 L L
0.00 0.10 0.20
Time

FIG. 3. Quadratic errors in the Maxwellian case.
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TABLE |
33x 16 65x 32
N 17x 8
Sublattices sizes 2,3 2,3 3,4 56 7,8 10, 11

Sublattices 0.004 s 0.04s 0.02s 0.01s 0.1s 0.04s
Multigrids MC 0.008 s 0.04s 0.27s

Multipole 0.001s 0.003 s 0.008 s

Quadratic schemes 0.009 s 0.1ls 36s

Proposition 3.1). These CPU times are carried out on the Computer DEC AlphaServeur 2.
4/275 OSF/1(Digital UNIX). Note that the computational costs of the multipole method at
smaller but this is only due to the particular form of the collision operator in the Maxwellial
case. In fact, the multipole method is of linear complexity in this case and has the sa
accuracy as quadratic schemes. We shall see that in the Coulombian case the computa
cost of the zero-order multipole method is almost equivalent to those of the two oth

—— sublattice size:a=5,b=6.

- sublattice size: a=2,b=3.

sublattice size: a=3,b=4.

methods.
0.00050
0.00040 t
. 0.00030 |
£
[+}]
L
®
©
]
&
0.00020
0.00010
0.00000
0.00

0

.10 0.20

Time

FIG. 4. Quadratic errors for various sizes of sublattices.
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0.0050 T T

—— N=16x8, a=2,b=3
- N=20x10,a=2,b=3
- N=24x13,a=2,b=3.
—— N=32x16, a=2,b=3.

0.0040 ——= N=40x20,a=2,b=3.

FIG.5. Quadratic errors for various values &b.

588.0 T

Exact order 4 moment
Sublattices method

---- Muitipole method

——= Multigrid Monte Carlo method

0.00 0.10
Time

FIG. 6. Order 4 momentin the Maxwellian case.

0.20
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2.5 T T
—— Initial data
—— Corresponding Maxwellian
Numerical result
20 i
'5 1.5 F
©
=4
2
[=
2
5
2
£ 10} |
0.5 k
0.0
0.0 6.0

parallel velocity

FIG. 7. Initial data fo(v;, 0), final distribution, and Maxwellian function in the Coulombian case.

5.2. Coulombian case/(=—3). In this case, we do not know any explicit solution of
the homogenous FPL equation. The initial data are chosen to be a bimaxwellian, that is

1
fo(v) = 5 Mru, 7 (V) + Mz, 7 (). (5.57)

whereM,y, , 7 is given by (1.5), an@o1 = (2, 0), vg2 = (4, 0). Again the two velocitiesp;
anduvg, have no orthogonal component and then the initial data are axisymmetric. Fina
we takevy, = 0.45 (thermal velocity) angdv =5 (density number of particles).

In Fig. 7, again we see that the final numerical distribution function coincides with th
Maxwellian whose parameters (mass, mean velocity, and temperature) are the macrosc
guantities determined from the initial distribution . In Table 1l we give the maximum relativ
error (with respect to their initial value) on the mass, the parallel momentum, and the enel

In Fig. 8, we can see the decay of the entropy and again observe that the Monte Ci
method relaxes to a slightly different state. The anisotropy of the initial data (about the me
velocity) enables us to see the relaxations of the temperatures in parallel and orthogc

TABLE Il
Mass Momentum Energy
Sublattices 1.1360647E-06 3.0174860E-07 1.7855102E-06
Multigrids MC 1.0131008E-06 8.9009598E-07 1.1824987E-06
Multipole 1.7978964E-06 3.6916401E-07 1.0708056E-06

Quadratic schemes 1.1360647E-06 3.4645211E-07 1.9997715E-06
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FIG. 8. Kinetic entropy in the Coulombian case.

Tempertures

——- Sublattices and quadratic methods
— Multigrid Monte Carlo method
e Muttipole method

0.0
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FIG.9. Temperature3, =T, T,=T,, andT in the Coulombian case.
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—— Multigrid Monte Carlo Method
—— Multipole Method
-~ Sublattices and quadratic Methods

750.0

Order 4 moment

700.0

650.0 .
0.0 0.5 1.0

Time

FIG. 10. Order 4 moment in the Coulombian case.

directions to the temperature of the Maxwellian equilibrium state (which is isotropic abo
the mean velocity); see Fig. 9. In these last two tests and also in Fig. 10 we remark that
mutipole method is a little bit less accurate than the two other methods (with the quadre
scheme as a reference), but converges to the the right value. The increase of the accura
the multipole method certainly needs mutipole expansions of higher orders but this wol
naturally increase the computational cost of the method. The same observation can be «
in Fig. 10. Now, in order to illustrate the need of two sublattice sizes to eliminate spuriot
collisional invariants (see Subsection 4.1), we plot in Fig. 11 two relaxations of the vall
of f at the center of the grid. The first one is obtained by using only one sublattice si
a =06, and the second uses two mutually prime integetss andb = 7. We then see that
the first curve does not converge to the value of the Maxwellain at the center of the gr
Figures 7-11 are performed on a velocity grid with=33 x 16 points.
The last test concerns the initial data

fo(v) = 0.01 exgd—10[(|v| — 0.3)/0.3]?}

which was tested in [18, 11]. The scheme in [18] leads to a final distribution function whic
is different from the right Maxwellian. The scheme in [11] is conservative entropic an
converges to the right Maxwellian, but the computational cost is big (quadratic complexit
and a perturbative process is needed (to obtain the right equilibrium). Here we have te:
this initial data on a grid wittN = 65 x 32 velocity points (see Fig. 12). We use a sublattice
method witha =7 andb =8 and obtain a conservative and entropic relaxation to the righ
Maxwellian. In Fig. 12 we have plotted the distribution function at different time steips (

denotes the number of time-iterations) and can see the convergence to the right Maxwell
The computational cost of this simulation is divided by a factor of the order of 50 compart
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FIG. 12. Test with the initial data used in [18, 11].
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TABLE 11l
33x 16 65x 32
N 17x 8
Sublattices sizes 2,3 2,3 3,4 5,6 7,8 10, 11
Sublattices 0.005s 0.06 s 0.03s 0.015s 0.16 s 0.07 s
Multigrids MC 0.02s 0.07s 0.45s
Multipole 0.01s 0.005s 0.3s
Quadratic schemes 0.018 s 0.3s 6.3s

with the quadratic scheme. Finally, note that the Coulombian computations are a little
more expensive than Maxwellian ones because of the presence of a non-zero power o
relative velocity in Coulombian interactiong & —3). Table Il shows the CPU times (per
iteration in time) for the Coulombian case.

6. CONCLUSION

We have established a simplified expression of the FPL operatorin a cylindrical geome
As for the three-dimensional case [6], this expression is written in a weak formulatic
from which we have derived conservative and entropic discretizations. A symmetrizati
and appropriate discretizations have been used to treat the problem near the axis (fol
cylindrical geometry). A second part of this work was concerned with the application «
fast algorithms to such discretizations. These algorithms were already shown to be effici
in the three-dimensional case [5]. Various numerical tests were presented in this paper
comparisons between these fast methods in both Coulombian and Maxwellian cases v
given.

The axisymmetric FPL egation is of great interest for physical applications mainly in tr
laser—plasma interactions and in astrophysics areas. For that purpose, the study of the <
inhomogeneouse case is necessary and will be investigated in a future work.
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